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Abstract: This paper presents the solution of the analysis of free vibration of a rectangular thin orthotropic 

plate using an improved Rayleigh’s method. The plate is bounded by two adjacent simply supported edges (i.e. 

SS) and another two adjacent clamped edges (i.e. CC). The total potential energy functional of a free vibrating 

plate, was derived from first principle, using the theory of elasticity. A truncated Taylor’s Mclaurin series of 

fourth terms was used to develop a general deflection function that satisfies the boundary conditions of the given 

plate. The deflection function was then, substituted into the potential energy functional and the resulting 

equation subsequently minimized. Thereafter, the equation for natural frequency, λ, of the SSCC plate was 

determined, and used to obtain natural frequencies for aspect ratios ranging from 0.1 to 2.0, in steps of 0.1. 

These average percentage differences, indicate that the formulated deflection function for the clamped plate, is a 

very good approximation to the exact deflection function of the free vibration of a clamped rectangular thin 

orthotropic plate. 

Keywords: Clamped Rectangular Plate, Free Vibration Analysis, Improved Rayleigh’s Method, Natural 
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I. INTRODUCTION 
[1] Obtained the exact solution of large deflections analysis of clamped circular plates. [2]Used Ritz 

method in the analysis of plated with opposite sides simply supported and other possible combinations of 

clamped, simply supported and free edge conditions and presented their analytical results. [3], conducted the 

free vibration analysis of isotropic and anisotropic rectangular thin plates subjected to general boundary 

conditions using a modified Ritz method. [4] Applied the method of superposition to the vibration analysis of 

rectangular plates with a combination of clamped and simply supported boundary conditions. [5], using novel 

separation of variables, obtained the exact solutions for free vibrations of rectangular thin orthotropic plates with 

all combinations of simply supported and clamped boundary conditions. One of the plate cases he considered is 

the SSCC plate. [6], using Taylor’s series function in Rayleigh-Ritz method, obtained a new approximate 

solution of SSCC plate. 

 

II. THEORITICAL FORMULATION 
2.1 Differential Equation of a Thin Rectangular Orthotropic Plate in Vibration. 

[5] Derived the following governing differential equation of a thin orthotropic plate experiencing free 

vibration: 

D1

∂4w(x, y, t)

∂x4
+ 2D3

∂4w(x, y, t)

∂x2dy2
+ D2

∂4w(x, y, t)

∂y4
ρh

∂2w

∂t2
 x, y, t = 0                                    (1) 

 

WhereD1 , D2 and D3  are flexural rigidities of the plateW x, y, t  is the deflection function of the plate 

x and y are cartesian co-ordinate of the plate. 

t = thickness of the plate. 

ρ = density of the material 

h = plate thickness 

 

Using Taylor –Maclaurin series, [7] expressed the shape function, w as follows: 

W = W x, y =    
F m  x0 F n  y0 

m! n!
(x − x0)m . (y − y0)n  (2)

∞

n=0

∞

m =0
 

 

WhereF m  x0  is the m
th

 partial derivative of the function, w, with respect to x.F n  y0 is the n
th

 

partial derivative of the function, w, with respect  to y, m! and n! are the factorials of m and n respectivelyx0 and 

y0 are the points of origin. 

By truncating the infinite series at m= n =4, the Equation (2) reduces to Equation (3) 
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W =    Im Jn  xm . yn     (3)
4

n=0

1

m=0
 

 

Expressing Equation (3) in terms of non-dimensional co-ordinates, R and Q, yields Equation (4) 

w =    am bn  Rm Qn    (4)
4

n=0

4

m =0
 

where 

am =  Im .  am   (5) 

and 

bn =  Jn .  bn(6) 
But R = x/a and Q = y/b                                           (7) 

 

The function given by Equation (4) can be further expanded in the following form: 

w R, Q =  a0 + a1R + a2R2 + a3R3 + a4R4  b0 + b1Q + b2Q2 + b3Q3 + b4Q4                           (8) 
Whereai and bi (i= 0,1,2,3,4) are constants. 

 

2.2 Boundary Conditions of SSCC Orthotropic Plate. 

The thin rectangular orthotropic plate considered in this work, has two adjacent simply supported edges 

and another two adjacent clamped edges as shown in Fig 1.  

 

 
 

The edges AD and DC are simply supported, while edges AB and BC are clamped. 

 

For simply supported edges, the deflections and bending moment vanishes. The boundary conditions for 

the SSCC plate, are as follows: 

W R = 0 = 0 ;     W′R R = 0 = 0 

W R = 1 = 0 ;  W′R R = 1 = 0   

W Q = 0 = 0 ;  W′Q Q = 0 = 0 

W Q = 1 = 0 ;  W′′Q Q = 1 = 0 

Substituting successively, the boundary conditions, W 𝐑 = 𝟎 = 𝟎 ,𝐖′𝐑 𝐑 = 𝟎 = 𝟎, 𝐖 𝐐 = 𝟎 = 𝟎, and  

𝐖′𝐐 𝐐 = 𝟎 = 𝟎 into the Equation (8) yields: 

𝑎0 = 0          (9) 

𝑎1 = 0           (10) 

𝑏0 = 0          (11) 

𝑏1 = 0          (12) 

 

Similarly, substituting successively, the boundary conditions, 𝐖 𝐐 = 𝟏 = 𝟎  and 𝐖′′𝐐 𝐐 = 𝟏 = 𝟎  into 

Equation (8), gives respectively: 

𝑎2 + 𝑎3 + 𝑎4 = 0                                                                                                                                                 (13) 

2𝑎2 + 6𝑎3 + 12𝑎4 = 0                                                                                                                                      (14) 

 

Solving Equations (13) and (14), yields the following: 

𝑎1 = 1.5𝑎4and𝑎3 =2.5 𝑏4                                                                                                                                  (15) 

 

Substituting these values of a1, and a2, into Equation (8), gives the following displacement function, W. 

W =𝑎4𝑏4(1.5𝑅2 − 2.5𝑅3 + 𝑅4)(1.5𝑄2 − 2.5𝑄3 + 𝑄4) (16) 

W = AH          (17) 
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where:  

A is the amplitude of the deflected shape=𝑎4𝑏4    (18) 

H is the deflected shape = (1.5𝑅2 − 2.5𝑅3 + 𝑅4)(1.5𝑄2 − 2.5𝑄3 + 𝑄4)                                  (19) 

 

2.3 Application of Variational Principle. 

The differentiation of the partial derivatives of the deflected shape, H, with respect to the dimensionless 

parameters, R and Q, are as follows: 

W′R = A
∂H

∂R
       (20) 

W′′R = A
∂2H

∂R2           (21) 

W′Q = A
∂H

∂Q
        (22) 

W′′Q = H
∂2H

∂Q2         (23) 

W′′RQ = A
∂2H

∂R ∂Q
         (24) 

 

Squaring and integrating partially the Equations (17), (21),(23) and (24) with respect to R and Q in close 

domain, yields equations (25),(26),(27) and (28) respectively. 

  (AH)2 ∂R ∂Q = 0.0000056846813
1

0

1

0
A2     (25) 

  (A
∂2H

∂R2)2 ∂R ∂Q =
1

0

1

0
0.013572A2      (26) 

  (A
∂2H

∂Q2)2 ∂R ∂Q =
1

0

1

0
0.013572A2    (27) 

  (A
∂2H

∂R ∂Q
)21

0

1

0
∂R ∂Q = 0.0073469A2      (28) 

 

III.FORMULATION OF NATURAL FREQUENCY EQUATION FOR A VIBRATING THIN 

RECTANGULAR ORTHOTROPIC PLATE. 
The total potential energy functional, Π, is given by Equation (29) 

U = Π – KE         (29) 

where U = strain energy 

KE = Kinetic Energy. But,  

U =
Dx

2b2   [
φ1

p3

1

0

1

0
(H

∂2H

∂R2)2 + 2 
φ2

p
(H

∂2H

∂R ∂Q
)2 +pφ

3
(H

∂2H

∂Q2)2]∂R ∂Q  (30) 

And, the kinetic energy, KE, is given as: 

K.E= 
pb2λ

2
ρt

2
  (AH)21

0

1

0
∂R ∂Q      (31) 

where P = aspect ratio 

λ = natural frequency 

 

Substituting the value of strain energy U and kinetic energy, KE into Equation (29) gives Equation (32): 

Π= 
Dx

2b2   [
φ1

p3

1

0

1

0
(H

∂2H

∂R2)2+2
φ2

p
(H

∂2H

∂R ∂Q
)2 +pφ

3
(H

∂2H

∂Q2)2]∂R ∂Q −
pb2λ

2
ρt

2
  (AH)21

0

1

0
∂R ∂Q (32) 

where 

φ
1

=  
Dx

Dx
= 1         (33) 

φ
2
 =  

B

Dx
          (34) 

and 

φ
3
  = 

Dy

Dx
          (35) 

 

Minimizing the Equation (32) yields: 

∂Π

∂A
=   

Dx A

b2
  [

φ
1

p3

1

0

1

0

(
∂2H

∂R2
)2 + 2

φ
2

p
(

∂2H

∂R ∂Q
)2 + pφ

3
(
∂2H

∂Q2
)2] ∂R ∂Q −  pAb2λ

2
ρt    H 2

1

0

1

0

∂R ∂Q     (36) 

 

Rearranging the Equation (36), gives natural frequency squared,λ
2
, for different aspect ratios, p 

(a)  For aspect ratio, = a
b  , the square of the natural frequency, λ

2, are given as follows: 

(i)  λ
2  in terms of p and b, yields Equation  37  
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λ
2 =

Dx

b4ρt
  [

φ1

p4  
∂2H

∂R2 
2

+
2φ2

p2

1

0
 

∂2H

∂R ∂Q
 

2

+ φ
3
  

∂2H

∂Q2 
2

 ∂R ∂Q
1

0

  H2 ∂R ∂Q
1

0

1

0

(37) 

(ii)  λ
2  in terms of a and b, gives  Equation (38) 

λ
2 =

Dx

a4ρt
  [φ

1
 
∂2H

∂R2 
2

+ 2φ
2

a21

0
 

∂2H

∂R ∂Q
 

2

+ φ
3

a4   
∂2H

∂Q2 
2

 ∂R ∂Q
1

0

b2
(38) 

 

(iii) λ
2  in terms of a and b, yields  Equation (39) 

λ
2 =

Dx

a4ρt
  [φ

1
 
∂2H

∂R2
 

2

+ 2φ
2

a2
1

0

 
∂2H

∂R ∂Q
 

2

+ φ
3

a4   
∂2H

∂Q2
 

2

 ∂R ∂Q
1

0

(39) 

(b)  For aspect ratio,p = b
a  , the square of the natural frequency, λ

2 , is given by Equation  40 . 
 

(i)𝜆2𝑖𝑛𝑡𝑒𝑟𝑚𝑠𝑜𝑓𝑝𝑎𝑛𝑑𝑏𝑔𝑖𝑣𝑒𝑠𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 40  

 

λ
2 =

Dx

a4ρt
  [φ

1
 
∂2H

∂R2 
2

+
2φ2

p2

1

0
 

∂2H

∂R ∂Q
 

2

+
φ3

p4   
∂2H

∂Q2 
2

 ∂R ∂Q
1

0

  H2 ∂R ∂Q
1

0

1

0

(40) 

Substituting the relevant Equations (25) – (28) into the Equation (37) and simplifying the resulting Equation 

yields Equation  (41) 

λ
2 =

Dx

b4ρt
 
φ

1

p4
∗ 238.746 +

φ
2

p3
∗ 258.481 + φ

3
∗ 238.746  ;       for  p =

a

b
 41  

 

In terms of a and p, the Equation  41  becomes Equation (42)  

λ
2 =

Dx

a4ρt
 φ

1
∗ 238.746 + φ

2
∗ 258.481p2 + φ

3
∗ 238.746p4  ;   for  p =

a

b
 42  

 

In terms of ‘a’ and ‘b’, Equation (41) represented as Equation (43) 

λ
2 =

Dx

a4ρt
 φ

1
∗ 238.746 +

φ
2
∗ a2

b2
∗ 258.481 +

φ
3

a4

b4
∗ 238.746   ;  for  p =

a

b
(43) 

Then, for the reciprocal of the aspect ratio (i.e) p=b
a  , the square of the fundamental frequency is given by 

equation (44)  

λ
2 =

Dx

a4ℯt
 φ

1
∗ 238.746 +

φ4

p2 ∗ 258.481 +
φ3

p4 ∗ 238.746  ; for    p=b
a  (44) 

where φ
1

=
Dx

Dx

,φ
2

=
B

Dx

,φ
3

=
Dy

Dx

 

 

The fundamental frequencies, λi  , are the roots of Equations (41)-(44). These fundamental frequencies, λ, of an 

SSCC plate, can be obtained for various value ofaspect rations, p= b
a  and combinations of flexural 

rigidities,φ
1
,φ

2
 and φ

3
. 

However, the exact solution can be obtained from the following expression given by Xing and Liu (2009). 

𝐷1

𝜕4𝑤

𝜕𝑥4
+ 2𝐷3

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+ 𝐷2

𝜕4𝑤

𝜕𝑦4
− 𝛽4𝑤 = 0 

 

IV. RESULTS AND DISCUSSION 
The Equations (42) and (44), were used to determine the fundamental frequencies,λ , for various aspect 

ratios, p=b
a  and different combinations of flexural rigidities, φ

1
, φ

2
 and φ

3
 of an  SSCC thin rectangular 

orthotropic plate undergoing free vibration. The results obtained are presented in Tables 1-3. Also the solution 

by [5] and[8], for aspect ratios, (p=b
a ) of 0.5, 1.0 and 2.0, are given in the same Tables 1-3. 

A comparison of the new solution in this work with those of [5], shows that the average percentage 

differences are 0.7791%, 0.5702% and 0.6440% for aspect ratios (p=b
a ) of 0.5, 1.0 and 2.0. A similar 

comparison with the solutions by [8] yields relatively, smaller average percentage differences for the same 

aspect ratios of 0.5, 1.0 and 2.0 than the corresponding average percentage differences between the results of 

this work and those of exact solution. Thus, there is a very close agreement between the new fundamental 

frequency results obtained and those of [5], and [8]. 
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Besides, the graph of fundamental frequencies,λ , and aspect ratios, p=b
a , (given in Tables 1-3), are 

plotted for various combinations of flexural rigidities φ1 φ 2 and φ3 (see Fig 2). The diagram shows that there is 

high convergence of the three curves as the aspect ratio increased. 

 

Table 1: Fundamental frequencies, λ ,of a free vibrating SSCC plate for various aspect ratios, p=b
a , and 

flexural rigidities, φ 1= φ 2= φ 3= 1 
Aspect Ratios, 

p=b
a , 

New solution Exact solution, 

λ2 

Kantorovich’s 

Solution, λ3 λ1
2
 λ1 

0.1 2413451 1553.528   

0.2 155911 394.856   

0.3 32584.37 180.511   

0.4 11179.88 105.735   

0.5 5092.441 71.361 70.877 71.081 

0.6 2798.84 52.904   

0.7 1760.569 41.959   

0.8 1225.465 35.007   

0.9 921.7203 30.360   

1 735.9535 27.128 26.867 27.059 

1.1 615.417 24.808   

1.2 533.3682 23.095   

1.3 475.2718 21.801   

1.4 432.7593 20.803   

1.5 400.7745 20.019   

1.6 376.1337 19.394   

1.7 356.7601 18.888   

1.8 341.2564 18.473   

1.9 328.6568 18.129   

2 318.2776 17.840 17.719 17.770 

 

where λ= fundamental frequency , λ2= fundamental frequency squared.  

Table 2: Fundamental frequencies, λ, of a free vibrating SSCC plate for various aspect ratios, p=b
a   and 

flexural rigidities, φ =φ3=1  and φ2=0.5 
Aspect ratios, 

P=b/a 

New solution Exact 

solution, 

λ2 

Kantorovich’ 

Solution, λ3 λ1
2
 λ1 

0.1 2400527 1549.363   

0.2 152680 390.743   

0.3 31148.37 176.489   

0.4 10372.13 101.844   

0.5 4575.48 67.642 67.331 67.497 

0.6 2439.839 49.395   

0.7 1496.813 38.689   

0.8 1023.527 31.993   

0.9 762.1643 27.601   

1 606.7131 24.632 24.449 24.610 

1.1 508.6068 22.552   

1.2 443.618 21.062   

1.3 398.7982 19.970   

1.4 366.8204 19.153   

1.5 343.3344 18.529   

1.6 325.6492 18.046   

1.7 312.0402 17.665   

1.8 301.3674 17.360   

1.9 292.8561 17.113   

2 285.9675 16.911 16.833 16.874 

where λ= fundamental frequency ,  λ2= fundamental frequency squared. 

Table 3: Fundamental frequencies, λ, of a free vibrating SSCC plate for various aspect ratios, p=b
a   and 

flexural rigidities, φ =1, φ3=0.5  and φ2=0.5. 
Aspect Ratios, 

p=b
a , 

New solution Exact solution, 

λ2 

Kantorovich’s 

Solution, λ3 λ1
2
 λ1 

0.1 1206845 1098.565   

0.2 78074.87 279.419   

0.3 16411.55 128.108   

0.4 5709.309 75.560   

0.5 2665.589 51.629 51.302 51.507 

0.6 1518.788 38.972   

0.7 999.6525 31.617   
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0.8 732.1007 27.057   

0.9 580.2284 24.088   

1 487.3449 22.076 21.898 22.042 

1.1 427.0767 20.666   

1.2 386.0523 19.648   

1.3 357.0041 18.895   

1.4 335.7479 18.323   

1.5 319.7554 17.882   

1.6 307.435 17.534   

1.7 297.7482 17.255   

1.8 289.9964 17.029   

1.9 283.6966 16.843   

2 278.507 16.689 16.609 16.638 

 

 
Fig 2: Graph of fundamental frequency, λ against aspect ratio, p 

 

V. CONCLUSION 
The closeness of the fundamental frequencies,   λ, from the three methods, underscores the similarity in 

the deflection functions chosen in the three methods. The new equations formulated in this work, can be used to 

compute very close approximation of the fundamental frequencies of an SSCC thin rectangular orthotropic plate 

undergoing vibration. And the newly formulated equations, give upper bound values of the fundamental 

frequencies. 

The convergence of the three curves given in Fig 2, indicates that the fundamental frequency at a 

certain value of the aspect ratio (i.e. at about p=b
a = 1), becomes approximately constant, irrespective of the 

combination of the flexural rigidities, φ 1 ,φ 2 and φ 3. 

And, the use of Taylor’s series in Rayleigh- Ritz method, overcomes the limitations encountered in the 

derivation of fundamental frequency using conventional methods. 
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